A Fast Method to Predict the Labeling of a Tree

نویسندگان

  • Sergio Rojas Galeano
  • Mark Herbster
چکیده

Given an n vertex weighted tree with (structural) diameter SG and a set of ` vertices we give a method to compute the corresponding ` × ` Gram matrix of the pseudoinverse of the graph Laplacian in O(n+ `SG) time. We discuss the application of this method to predicting the labeling of a graph. Preliminary experimental results on a digit classification task are given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VHR Semantic Labeling by Random Forest Classification and Fusion of Spectral and Spatial Features on Google Earth Engine

Semantic labeling is an active field in remote sensing applications. Although handling high detailed objects in Very High Resolution (VHR) optical image and VHR Digital Surface Model (DSM) is a challenging task, it can improve the accuracy of semantic labeling methods. In this paper, a semantic labeling method is proposed by fusion of optical and normalized DSM data. Spectral and spatial featur...

متن کامل

Constructing Graceful Graphs with Caterpillars

A graceful labeling of a graph G of size n is an injective assignment of integers from {0, 1,..., n} to the vertices of G, such that when each edge of G has assigned a weight, given by the absolute dierence of the labels of its end vertices, the set of weights is {1, 2,..., n}. If a graceful labeling f of a bipartite graph G assigns the smaller labels to one of the two stable sets of G, then f ...

متن کامل

Application of soil properties, auxiliary parameters, and their combination for prediction of soil classes using decision tree model

Soil classification systems are very useful for a simple and fast summarization of soil properties. These systems indicate the method for data summarization and facilitate connections among researchers, engineers, and other users. One of the practical systems for soil classification is Soil Taxonomy (ST). As determining  soil classes for an  entire area is expensive, time-consuming, and almost ...

متن کامل

zoning of flood hazard in Nowshahr city using machine learning models

  The aim of this study is to predict and model flood hazard in the city of Nowshahr, Mazandaran province using machine learning models. The criteria and indicators affecting flood hazard were identified based on the review of resources, and then the indicators were converted into rasters in ArcGIS environment, and finally standardized by fuzzy method for use in the models. K-nearest neighbor ...

متن کامل

بررسی کارایی مدل درختان تصمیم‌گیری در برآورد رسوبات معلق رودخانه‌ای (مطالعه موردی: حوضه سد ایلام)

The real estimation of the volume of sediments carried by rivers in water projects is very important. In fact, achieving the most important ways to calculate sediment discharge has been considered as the objective of the most research projects. Among these methods, the machine learning methods such as decision trees model (that are based on the principles of learning) can be presented. Decision...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007